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‘ ABSTRACT

" In this report, we describe a statistical model for )
§ characterizing the closely spaced object (CSO) resolution process. 5
5 A logic for CSO clustering which simulates the CSO detection A
F process is given. Measurement standard deviations for isolated i
targets, resoived CSO's, and unresolved CSO's are given. Results ﬂ
i
of this report are useful for functional simulation and per- s
i. o
1 formance analyais for the CSO resolution problam.V y
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I. INTRODUCTION

Resolution of closely spaced objects (CSO's) has been
a subject of interest for many years first in radar applications
and more recently with optical sensor applications. 1In our
recent involvement in the optical signal processing area, it haa
often been necessary to obtain simulated signal processor outputs
from an optical sensor. Because a complete focal plane/signal
process (FP/SP) simulation is extremely complicated and time-
consuming to carry out, a statistical functional model which
simulates the above process is desiriple.
In addition to the target signature which is a function
of target orientation, sensor viewing angle, FP geometry, etc.,
the FP/SP process depends on many random factors such as background
noise, target scintillation, sensor pointing error (determined
by IMU and perhaps also stellar update, if available), receiver
noise, etc., Functional models for most of these factors are
available.* The only function which has not been modeled pertains
to the process of resolution of closely spaced objects (cso}s),
although the C80 problem itself and the performance of CS0 resolu-
tion algorithms have been studied in considerable detail, [l]1-[10]).

The purpose of this report is to present a functional model for

the CS0O resolution process.

¥For example, the SATIN program of Teledyne Brown Engineering,
Huntsville, AL, and the FASSIM of MDAC, Huntington Beach, CA.
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A CSO functional model should consist of elements illu-
strated in Fig. 1l.,1. Notice that the CSO classification logic
simulates the CSO detection process while the rest of the model
simulates the metric and radiometric estimation errors in a CSO
environment, These two procedures will be discussed in Section
2 and 3, respectively.

We emphasize that a functional model is a statistical
simulator of the actual process. £uch a model can never be made
flawless because many processes can not be characterized with a
parameterical statistical model. In some limited simulation
studies (especially the metric measurement accuracy portion),
we have cbtained reasonable agreement with the functional model.
We therefore beliave that this model provides a good starting point
for use as a signal processor simulator or to give analytical
expressions for performance evaluation purposes.

Because our current involvement in the signal pro-
cessing area has concentrated on the optical case, discussions
in this report are centered around the reqolution process for
optical signals. It can be easily shown however, that this model

<an be axtended to the radar case (in both range and angle domains)

in a straightforward manner.
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II. CSO CLASSIFICATION LOGIC

2.1 CSO Resolution Probability

The probability of correctly identifying the number of
targets in a CSO cluster has been reported in several simulation
studies, e.g., [3]. Roughly speaking, 1f the separation between
targets is less than half of the detector width, the probability
of identifying the existence of multiple targets is very small.

If the separation is more than one detector width and the signal
to noise ratio is 10 or higher, the probability of identification
is very high while noticeable metric measurement degradation
persists until the separation is greater than two detector widths.
When the separation is batween half to one detector width, the
probability of CSO recognition is a function of separation and
individual signal-to-noise ratio. Since an analytical expression
for this probability does not exist, a precise functional model
will include a numerical table containing resolution probabilities
for a wide range of parameter values. The probability of recogniz-
ing a two-target CSO obhtained from Monte Carlo simulation for
sevaral CSO configurations was shown in [3]. When the aignal-to-
noise ratio is high however, a straight lire between zero probability
at half a detector width meparation and unity probability at one
detector width separation appears to be a good approximation for

the resolution probability.
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In summary, let Pij denote the probability of resolving ;

target i1 from target 3J; one may use

1 a;y 2 1 DW
1 1
1

where DW detector width

dij = anqular separation between target i and target 9

SNR, = voltage signal to noise ratio of the kth target (>10). i
For high SNR, one may approximate £(+,+,+) with
2d ;
i

We note that when SNR is low, the probability of false
CSO (i.e., deciding that two targets are present when in fact there
is only one target) may become appreciable and should also be
taken into account. The probability of false CSO can be reduced
however, at the expense of probability of CSO detection (see the
raesults of Ref. [3]). The probability of ¢SO detection and the
probability of false CSO as functions of the target separation in
detector widths are dependent upon the thresholds. Beyond the one
detector width separation point, one can reduce the false CSO rate
without reducing the probability of CSO detection. A more elaborate

¢80 functional model should include curves like those of Ref. [3].
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2.2 (€S0 Clustering Legic

Jiven the angular locations ¢of a set of targets, their
pair-wise resolution probability can be evaluated using the above
model. When a target is found to be resolved, the metric and
radiometric measurements on this target are the true target loca-
tion and amplitude, respectively, plus noise simulated by random
numbers with known variances. When a target is unresclved, the
centroid of unresolved targets is computed and the measured centroid
is the true centroid corrupted by noise. The reported radiometric
measurement will be the total signal amplitude at the true centroid
location corrupted by noise. 1In the following, we describe a
method for determining clusters of unresolved cbjects.

1) Two targets are called connected 1f they are
unresolved.

2) Twe targets are completed resolved if their
separation is greater than two detector widths. 1If a
target is completely resolved from all its neighboring
targets, it is called an isolated target.

3) For two targets with their separation between

1/2 and 2 detector widths, they are elther resolved or
unresolved. For separation between 1 and 2 detector
widths, they are resolved, but their metric and radio-
metric measurements must be degraded from that of an
isolated target. For deciding on two targets with
separation between 1/2 and 1 detector widths

(il.e., Q0 < Pij < l), draw a uniform random number between
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0 and 1. If this number is less than f(dij), they are
resolved, otherwise they are unresolved. Metric measure-
ments for resolved targets outained this way must be
degraded.

4) A cluster of objects are completely unresolved, if
all objects in the cluster are mutually connected.

5) Each completely unresclved cluaster will result in a
centroid representing the metric location of all targets
in the cluster.

An example of the above method is illustrated in Fig.
2.1, Notice that one centroid will be reported for each of the
unresolved CSO clusters in Fig. 2.1, l.e., cluasters 234, 345, 56,
68, and abcd, Each will have a centroid computed using true target
amplitudes and locations. The measured centroid is the true
centroid corrupted with noise samples., The target radiometric
measurement ia the combined signal amplitude at tha centroid
location corrupted with noise samplea, The centroid and radio-
metric measurement computation will be discussed in the next
section.

Finally, we remark that computer implementation of the
above procedure is an interesting and artful subject. In the
Appendix A, we present an algorithm and the IFTRAN listing of this
algorithm which implements the CSO clustering logic,
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0 .5 1l 1.5 2 Detector width (DW)

A Isolated Object: 1 (d > 2 DW's)

A Resolved CSO's: 7 (due to random draw)
9 (4> 1 DW)

A Unresolved CSO's:

A Separations S .5 DW:
234, 345, abcd

A Separations between .5 and 1 DW,
connected due to random draw:

56, 68

Fig. 2.1 CsO Classification Logic Illustration




III. CSO MEASUREMENT ACCURACY

3.1 Signal Model

Bafore we proceed to discuas the metric and radio-
matric measurement accuracy, we first establish notations and
conventions useful for characterizing the signal process. We
note that numerous studies have been deavoted to understanding the
optical signal process, see for example, [1l] and [9]. These studies
concluded that an additive Gaussian noise model is a good
approximation for the background limited case. This is the model
we will adopt in this report.

Let s+(t) denote the optical pulse shape appearing on
the focal plane. The signal at the detector output is the con-
volution of s¥(t) with the detector impulse response. We will
use a rectangular pulse shape to denote the detector impulse
response. The length of the rectangular pulse is called the
"detector width". Let s(t) denote the pulse shape at the detector
output, for a symmetric pulse shape the matched filter impulse

respense is also s(t). The matched filter output is therefore

plt) 1Jf;(r)s(t-r)dr (3.1.1)

where p(t) is also the signal autocorrelation function of s(t)

which is symmetric and contains unit energy, i.e.,
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fls(t)lzdt = 1 (3.1.2)

Notice that we have used the notation "t" to denote the
independent variable for the signal process. It denotes "time"
in radar signals. For optical signals, it denotes "angle". We
assume that the in-scan and cross-scan angle directions are
orthogonal and can be treated independently.

We next define the rocot-mean-square (RMS) "bandwidth"
(or beamwidth). The RMS bandwidth of a waveforem s(t) is the

square root of the second central moment of P(iw), i.e.,

8 & RMS "bandwidth"

(3.1.3)
- /(w-a‘)2|p(1w)|dm

where w is the mean of |P(iw)|
P(iw) is the Fourier transform of p(t)

p(t) is the autocorrelation funct;on of s(t).

From (3.1.3) it can be shown that the square of the RMS
bandwidth (or beamwidth) is equal to the negative of the second

derivative of p(t) evaluated at t=0, i.e.,

82 = - B(0) (3.1.4)
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This relation will be used in later derivations.
It is often convenient to represent p(t) using a

Gaussian shaped function. 1In this case,

2 2
plt) = ¢ & /20 (3.1.5)
The Fourier transform of o(t) is
2.2
P(iw) = y2rm o™ ¥ /2 (3.1.6)
the second central moment of P(iw) is 1/02 and we can
rewrite p(t) as
2,2 _
o(t) = et B7/2 (3.1.7)

where 8 is the RMS bandwidth (beamwidth).
We now discuss the metric and radiometric measurement
accuracy for isolated targets, resolved targets, and unresolved

CS0's individually below.

3.2, Isolated Targets

An isolated target is a target free from interference
induced by nearby targets. Its metric measurement accuracy is

well-known and represented by

11l
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where 40 is the sensor angular resolution and is equal to the
inverse of the root-mean-square beamwidth of the detector output
to a unit strength point source.

Similarly, the fractional signal amplitude (radiometric) f
measurement accuracy is inversely proportional to signal to noise

ratio, 1l.e.,

a
—-;-m (3.2-2)

where a is the signal amplitudes.

3.3 Resolved CSO's

Metric measurement accuracy for resolved CSO's degrades
from that for isolated targets. Assuming that the dominant
3 degradation comes from the closest target, we will therefore
only have to consider the two target case. Let D(t) denote the

degradation factor for a separation of t; one obtains
Oe L UO'D(T) (3-301)

where 9 is given in (3,2.1) and 9g is the degraded metric
measurement accuracy. The degradation factor D(t) is a function
of the signal autocorrelation function. The exact expression

for D(r) is very complicated:

12




D(t) = v (3.3.2)
where
,?‘ X, = 1 = p(1)
% Xy, = 1+ p(1)
i x, = (1)2/82
l X4 - l+6(‘r)/82
' xg = 1 = B(1)/8
Y = (X)Xg=X3) (XX =X;)
; 62 = (RMS bandwidth)? = =5(0).
! The above expression can be obhtained using the Cramer-Rao bound
| analysis illustrated in (1], [2], [7], (8] and [9]. If the signal |
f autocorrelation function is Gaussian-ghaped (eq. (3.1.7)), then ;
f the expreamsion for D(tr) can be considerably simplified to obtain 3
g | - 2,2 2 ;
1 D(1) = —Li={itT B) p” (%) (3.3.3) 1
(1-p2(1))? - 48%2(n) {
w; Similarly, the standard deviation of the degraded | 2
ki radiometric measurement, C,+ can be expressed as E
A general expression for Da(r) is as follows: {
1 4
(X, Xg=%X.,) y
475 "3
D,(t) = —y (3.3.5) f
13 !
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where X0 Xy and x; are the same as those defined for the
degradation factor D(T) in Eq. (3'3f2)'
For a Gaussian-shaped p(t), the Da(r) bacomes
1
1252 4 44,2 7

D (1) =f{i=il-T B+ T BJp (1) (3.3.6)

(l=p“ (1)) = 7787 p" (1)

where p(t) is defined in (3.1.7).

The above gives the metric and radiometric measurement
accuracy for the resolved CSO's. These formulas are obtained
using the Cramer-Rao bound analysis. It has been observed that
for targets separated by more than one half detector width, the
performance of the maximum likelihood estimators is very close
to that predicted with the Cramer-Rao bound, see for example [3]
and ([7]. Furthermore, the estimate is unbiased. We therefore

believe that the albove equations give a close indication of the

actual performance.

3.4 Unresolved CSO's

For unresolved CS50'as the centroid hased upon the true
signal amplitudes and locations and the combined signal amplitude
at the centroid location will be computed. These quantities are
then corrupted with noise samples to simulate metric and radio-
metric measurements for unresclved CSO's. This section gives

formulas for computing the true and noisy centroids and signal

14
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amplitudes. Notice now that the target metric and radiometric
measurements have both bias and random errors.

Let (ai{Ti), i=1,...,N denote amplitudes and locations
of unresolved CS0O's arranged in either the in-scan or cross-scan

direction. The matched filter output without noise is

r(t) = ; 8,0 (t=T,) (3.4.1)

where p(t) is the signal autocorrelation function. The centroid

of r(t), €, is then
_/2 r(t)de
f A —

J/E(t)dt

Approximating p(t) with a Gaussian pulse shape, one obtains the

(3.4-2)

following expression for E,

? Ti8%y
[ R (3.4.3)

D
We next consider the estimation accuracy. The reéeived
noisy measurement is
E(t) = r(t) + n(t) (3.4.4)

where n(t) is Gaussian-white with variance Ng-

15
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It i3 well-known that the Cramer-Rac bound on estimating

T for problems defined by (3.4.4) is

1
O-E- m;— (3.4.5)

where

SNR = (voltage) signal-to=-noise ratio
& |1z | /AT

||x(t) || = square root of signal energy

. = root-mean-square bandwidth of r(t).

r

Let pr(r) denote the autocorrelation function of r(t); then

P r(t)r(tﬂ)dt = ; Za a,p(t+7,.)
l|r(t>l|’ |z(t)||: 173 L3
(3.4.6)
where
Tyy ™ |Ti‘le

p(*) = autocorrelation funotion of s(t)

2 -
Hr(t)‘l ? ; “iajp“ij) (3.4.7)

and

16
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The roct-mean=-square bandwidth of r(t), Br is
- (o 1/2
8 ( or(O))

r

where b'r(r) is the second derivative of the autocorrelation function

pr(T)r i.e.,

1 ,
B(1) = Z Z a a.b(t+7,.) (3.4.9)
¥ Nz (12 T G 4974

Substituting the above results into (3.4.5) one obtains

og = 1 (3.4.10)
[— ; Zj: SNRiSNRjB(Tij)I

where SNR, is the signal-to=-noise ratio of the i-th signal. For

a Gaussian qhapad p(t), one has

2.2
B(1) m -B2(1-1282) "7 B7/2 (3.4.11)

where 8 is the root-mean-square bandwidth of s(t). Finally, the

centroid estimation accuracy is

1

op = y (3.4.12)
2,, .2 o2, "Ti4f 2I

17
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With the above development, it is straightforward to
obtain equations for radicmetric measurements, The radiometric
measurement for an unresolved CSO cluster is the combined signal
amplitude at T corrupted with noise. The combined signal amplitude,

denoted a,, at tis

a, - r(t) (3.4.13)

where r(+) is given in (3.4.1) and t is given in (3.4.2) (or

(3.4.3)). The standard deviation on measuring a, is

a
—C E%F (3.4.14)

whero SNR is the same signal-to=-nolse ratio used in (3.4.5), i.s.,

SNR = |lr(t)l!//ﬁ-°' (3.4.15)

E::z: 172
- SNRiSNij(Tij)
i3
where SNR, is the signal~to-noise ratio of the i-th signal and

We note that when we use centroid location and amplitude

to represent a group of targets, both location and amplitude

esntimates are biased with respect to each target, for example

18
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b = Ti-t (304.16)
and

b = ai - a, (3.4.17)

where bT and ba are location and amplitude biases of the ith

i i
target, respectively. If one assumes a Gaussian shaped auto=-
correlation function, then for the two-target CS0 case one obtains

the location bias errors

b, = —= (3.4.18)
1 R+l
b = ~RL (3.4.19)
T
2 R+1

and the amplitude bias errors

b

a 2 2 2 2 2
1w (1 /2RENT) L gmRG /(R (3.4.20)
1
b
a. 2 2 2 2 2
—2 w <R @ F/2(REL)T |y _g"RY T/2(RHL) Y (3.4.21)

a2
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where

R 4 al/a2

N ETI

The above equations can be easily extended to the multiple-target

CS8S0O case.




Iv. NUMERICAL EXAMPLE

In this section, we will illustrate the CSO measurement
accuraclies for a two-target CSO case using the results of the
previous section. We will assume that the single target matched
filter output (or, the signal autocorrelation function) follows
the Gaunsiin-lhapod function, Furthermore, wa use the conventional
rule-of~thumb in which a signal to noise ratio of 10 results in
an angle~splitting rxatio of 10 (i.e., measurement accuracy is one
tenth of the detector width), this results in detector width
& ow = 1/8.

We summarize pertinent measurement accuracy egquations

to be used in this section as a handy reference.

1, Target Location Estimation
1.1 Estimation Standard Deviation
1.1.1 Point Target:
T w 1 - A8
B SNR SNR
1.1.2 Resolved CSO (Degradation Factor):
1/2
2, 2
p(r) = [2i3=2)0 U4

l-p®(2) =" p%(R)

e e s o il RO St
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where

1.1'3

where

1.2

2.
2.1
2.1.1

L = 1f
1 = scparation
2
M“_ez/z

Unresolved CSO (Centroid Degradation Factor

For A Two-Target CSO)

1
D (1) =
u 2,. 1/2
[1+R%+2R(1-2°) "% /2
SNR,
R =
SWR,

Estimation Bias (Two Target Case Normalized With
Respect to 1/8):

Target Amplitude Estimation
Estimation Standard Deviation

Point Target:

22
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2.1.2 Resolved CSO (Degradation Factor):

1/2
b (1) = |im2=2?reho? (g) ]
a (L-p“(R))“=2"p% (2

2.1.3 Unresolved CSO (Centroid Degradation Factor For A
Two-Targat CSQ):

L 1/2
%y [ 2 ) /2]'

1+R“+2Re

2.2 Estimation Bias (Two Targat Case):

! -272e)?) 1 -rR%F/2(r41) 2
)- & |

22 | g zmen? | -RBZ2(men

The metric and radiometric measurement accuracies for
a two-target CSO case are illustrated in Figs. 4.1 and 4.2,
respectively. 1In Fig. 4.1(a), we show the metric estimation
random error degradation factor versus target separation in
detector widths. When two targets are separated by more than one
detector width, they are always resolved (provided that the SNR's
are at least 10) and their location estimation error grows larger

as the targets get closer. When two targets are closer than 1/2




Location Bstimation Standard

Location Estimation Error

Deviation Degradation Factor

Normzlized by Detecter Width

EQUAL INTENSITY TARGETS, RANDOM ERROR ONLY.

50
\
1 \
- \
\ |rARTIALLY RESOLVED
1 \ |[RrEsoLvED
\

10 N

UNRESOLVED

;
57 A SAP— (a)
|

TARGET ESTIMATION

CENTROID

) | OBTAINED WITH
 msTIMATION

PROBABILISTIC WEIGHTING

LI A S S B M B R S s S |
1

1.8 : 2.0

Sepazation in Detector Width

¢ BQUAL AMPLITUDE TARGETS
¢ BNR = 10

1. ARS8 BIAS AND RANDOM ERRORS

{b)

Separation in Detector Width
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EQUAL INTENSITY TARGET, RANDOM ERROR ONLY
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detector width, they are almost always unresolved and a single
target is reported with its location being the centroid of these two
targets. Because a combined two-target pulse will have a higher
signal-to-noise ratio, the centroid estimation results in smaller
random errora. When two targets are separated between one half
and one detector width, they are sometimes resolved and sometimes
unresolved. The curve in this region is obtained by combining the
resclved and unresolved cases with probabilistic.. weightings. 1In
Pig. 4.1(b), we compute the root-sum-square of the bias and the
random errors. Recalling discussions of the previocus section,

the target location (and amplitude) egfimate is unbiased when

the targets are resolved. The bias term is therefore only included
for targets separated by less than one detector width. Results of
Fig. 4.1 seem to indicate that the position estimation accuracy
improves when targets are closer than a certain distance. This

is due to the fact that only one target is reported for a two-
target CSO, in this situation the random error decreases as the
combined signal to noise ratio increases and the bias error also
decreases as target separation decreases. However, the estimafe
of the number of targets is in error which could degrade the scan-~
to scan correlation and tracking functions. This observation
reinforces the fact that one must consider both detection and
estimation processes in the CSO resolution problem. Figure 4.2
illustrates the amplitude eatimation accuracy for a two-target

CSO case. Most observations discussed for the position eatimation
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above still hold except that the bias error for the amplitude
estimate increases as target separation decreases (compare 4.1l(b)
with 4.2(b)). When two eyual intensity targets are almost co-
located, the amplitude estimate bias error equals the target
amplitude provided that the closer target does not block the

farther target.




V. FINAL REMARKS

In this report, we have described a procedure for
determining (1) CSO clusters and (2) metric and radiometric
measurement accuracies for isolated, resolved, and unresolved
targets. Target metric and radiometric measurements simulated
this way (Fig. 1.1) include errors representative of the sensor and

signal processor. The model discussed in this report is useful

for functional simulation and error analysis. A numerical y
example illustrateing target parameter estimation accuracy for a P
two-target CSO case is given. These results also illustrate the

transition between the completely resolved and unresolved regions

for CSO targets.
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APPENDIX A: AN ALGORITHM FOR IMPLEMENTING THE CSO CLUSTERING LOGIC*

' In this appendix, we will give an algorithm for imple=-

¢ menting the CSO clustering logic. Perhapas the best way of explaining
this algorithm is to use examples. Consider the case that a group

of 5 targets is being considered as potentially forming a ¢80

cluster. Let these five targets be referred to as target number

1l thru 5. After applying the target connection rules described

in Saection 2.2, we obtain the following CSO matrix:

(A.1) !

- -
O 0O o

o O ¥ O M
o » O O O
= O O O

The (i,j)th entry denotes the "status" between target i and target
J. For example, the (1,3)th entry is "1"; this incidates that

target 1 and target 3 are connected. A "0" entry denotes that two !

.

respective targets are remsolved., Notice that all targets are

connected to themselves (the dlagonal terms). By visually examining
this matrix, one can immediately conclude that targets 2 and 4 are
completely resolved, targets 1 and 3 and targets 1 and 5 form two

two-target CSO's. An algorithm for processing this matrix can

5 S M e o e 5 b R A R ko

proceed as follows:

BPPr STE S TP T A s

*This Implementation LS due to L. Youens to whom we are very grateful. -




1) At column one, search trhough the row elements; one
first finds target 1l ims connected with target 3,

t 2) Moving down again, one finds that target 5 is also

E connected with target 1. But target 5 is not connected
with target 3, so targets 1, 3, and § do not form

a complete connection.

e TR TS

3) Processing column two, one findq that target 2 is
completely resolved.

4) Processing column three, one finds that targets 3 and
1l are connected. This result gives a redundant
connection and this must be corss examined to avoid
multiple measurements reported on the .me CS0O cluster.

8) Processing column four, one finds that target 4 is
completely resolved. |

6) Processing column five, one finds that target 5 is
connected with target 1.

The output of this algorithm will report four measure-
ments, 13, 2, 4, and 15, 1In the above procedure, when one processes
column i, one uses the (i,i)th element as the base element for

comparison.

As a second example, we apply the above algorithm to

. .

process this following matrix
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= O + O ¥
o o O P O
H O - O
o ++ O O O
+ O o

One f£inds that targets 1, 3, and 5 form a complete connection.

this casze, this algorithm reports 3 measurements consisting of

135, 2, and 4.

The following IFTRAN listing will process the i-th

column of a CSO matrix:

OO0 000

00 0a0n

KP, TARGET CSO MATRIX (N,N)
NX, # OF TARGETS IN A CSO CLUSTER
IX(1l) TO IX(NX), TARGET INDICES INTO XP ARRAY

DO (I = 1, N)

O NX el
IX(l) = I
DO (K= 1, N)

KEY, SET TO 1 IF MATRIX ELEMENT ZERO OR IF TARGET
ALREADY IN IX ARRAY

3l

(A.2)

In




KEY = (
DO (L = lr NX)
IF ( KP(IX(L),K) .EQ. O

- T s e

& +OR. IX(L) .EQ. K ) KEY = 1
END DO
IF ( KEY .EQ. 0 )
NX = NX + 1
IX(NX) = K
END IF
END DO
c .
C  OUTPUT CSO CLUSTER g
¥ t
g c '
g .
: '
i
| END DO
P
Notice that the I is the column index and X is the row indox.b Other
key parameters are defined in the comment statements. Using this .
é_ code to process the (A.2) matrix, one obtains the following resulte: ’
Ia], NX=3, IX(l)m=l
IX(2)=3
IX(3)=5

Iw2, NX=], IX(l)w2

I=3, NX=3, IX(1l)w3
IX(2)ml
IX(3) =5




I=4, NXw=l, IX(l)=4

I=5, NX=3, IX(l)=5
IX(2)wl
IX(3)m3 .
Clearly, the 3-target CSO is reported three times. A simple

cross check can quickly eliminate the redundant clusters, ;
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